Promyelocytic Leukemia Zinc Finger Protein Activates GATA4 Transcription and Mediates Cardiac Hypertrophic Signaling from Angiotensin II Receptor 2
نویسندگان
چکیده
BACKGROUND Pressure overload and prolonged angiotensin II (Ang II) infusion elicit cardiac hypertrophy in Ang II receptor 1 (AT(1)) null mouse, whereas Ang II receptor 2 (AT(2)) gene deletion abolishes the hypertrophic response. The roles and signals of the cardiac AT(2) receptor still remain unsettled. Promyelocytic leukemia zinc finger protein (PLZF) was shown to bind to the AT(2) receptor and transmit the hypertrophic signal. Using PLZF knockout mice we directed our studies on the function of PLZF concerning the cardiac specific transcription factor GATA4, and GATA4 targets. METHODOLOGY AND PRINCIPAL FINDINGS PLZF knockout and age-matched wild-type (WT) mice were treated with Ang II, infused at a rate of 4.2 ng·kg(-1)·min(-1) for 3 weeks. Ang II elevated systolic blood pressure to comparable levels in PLZF knockout and WT mice (140 mmHg). WT mice developed prominent cardiac hypertrophy and fibrosis after Ang II infusion. In contrast, there was no obvious cardiac hypertrophy or fibrosis in PLZF knockout mice. An AT(2) receptor blocker given to Ang II-infused wild type mice prevented hypertrophy, verifying the role of AT(2) receptor for cardiac hypertrophy. Chromatin immunoprecipitation and electrophoretic mobility shift assay showed that PLZF bound to the GATA4 gene regulatory region. A Luciferase assay verified that PLZF up-regulated GATA4 gene expression and the absence of PLZF expression in vivo produced a corresponding repression of GATA4 protein. CONCLUSIONS PLZF is an important AT(2) receptor binding protein in mediating Ang II induced cardiac hypertrophy through an AT(2) receptor-dependent signal pathway. The angiotensin II-AT(2)-PLZF-GATA4 signal may further augment Ang II induced pathological effects on cardiomyocytes.
منابع مشابه
Pressure overload increases GATA4 binding activity via endothelin-1.
BACKGROUND The signaling cascades responsible for the activation of transcription factors in the hypertrophic growth of cardiac myocytes during hemodynamic overload are largely unknown. Several of the genes upregulated in the hypertrophied heart, including B-type natriuretic peptide (BNP) gene, are controlled by the cardiac-restricted zinc finger transcription factor GATA4. METHODS AND RESULT...
متن کاملThe Effect of 8-Weeks of Low-Intensity Swimming Training on Promyelocytic Leukemia Zinc Finger Protein and Spermatid Transition Nuclear Protein Gene Expression in Azoospermic Rats Model
Aims: One of the causes of infertility in men is the azoospermia disease, which is attributed to the lack of sperm in each sperm. The primary function of spermatogenesis is the maintenance, proliferation, and differentiation of spermatogonial cells. Thus, the present study aimed to investigate the changes in Promyelocytic Leukemia Zinc Finger (PLZF) and spermatid Transition Nuclear Protein (TNP...
متن کاملPartnering up for cardiac hypertrophy.
The heart must adapt its mechanical activity to the prevailing hemodynamic demands. When an increased demand is brought about by sustained stimuli such as growth and development, pressure overload, or mutations in sarcomeric proteins, the heart will typically undergo an increase in size caused by myocyte hypertrophy. Underlying this hypertrophic response is the coordinated interaction of distin...
متن کاملApplication of curcumin to heart failure therapy by targeting transcriptional pathway in cardiomyocytes.
Heart failure is one of the leading causes of death throughout the world. During the development and deterioration processes of heart failure, cardiomyocytes undergo maladaptive hypertrophy by altering hypertrophy-related gene expression. The zinc finger protein GATA4 is one of the transcription factors involved in the regulation of cardiomyocyte hypertrophy. In response to hypertrophic stimuli...
متن کاملThe transcription factor GATA-6 regulates pathological cardiac hypertrophy.
RATIONALE The transcriptional code that programs maladaptive cardiac hypertrophy involves the zinc finger-containing DNA binding factor GATA-4. The highly related transcription factor GATA-6 is also expressed in the adult heart, although its role in controlling the hypertrophic program is unknown. OBJECTIVE To determine the role of GATA-6 in cardiac hypertrophy and homeostasis. METHODS AND ...
متن کامل